G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 



Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

Grupo de renormalização no espaço de momentos[editar | editar código-fonte]

Suponha uma teoria quântica de campos com campos  e constantes de acoplamento  descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de 

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco

Chamaremos esse campos de  e diremos que ele é o campo na escala . Então

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Também chamaremos a constante de acoplamento de . A função partição sobre os campos  é

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Já que alguns dos modos de Fourier estão faltando, o campo  é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita  regulares.[2]

Vamos decompor a região de integração da expansão em modos em duas partes:

 e 

Chamaremos as expansões em modos correspondentes por

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre  na integral de trajetória, mantendo  variável

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Aqui,  e  são os novos campos, em termos dos quais a ação efetiva

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

é regular no limite para o contínuo. Os campos  e as contantes  na escala de corte  são chamados de campos nus e constantes de acoplamentos nuas, enquanto  e  são ditas renormalizados.

Equação de Callan-Symanzik[editar | editar código-fonte]

Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar  e variar . Nós fixamos os campos  e constantes de acoplamento  numa escala  (com os valores medidos nessa escala) e mudamos os campos nus  e as contantes nuas . Se pudermos mover  para o infinito sem mudar o comportamento do sistema na energia  (descrito por  e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.

Uma outra forma de ver é mover , fixando  e consequentemente  e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de  para , as constantes de acoplamento mudarão de  para , onde  é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial  é chamado função beta da constante de acoplamento .




Na físicateoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.

A teoria de campo é definida pela ação local:

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde  é a métrica do espaço bidimensional em que a teoria de campo é formulada,  é o escalar Ricci de tal espaço, e  é um acoplamento constante real. O campo  é consequentemente chamado de campo Liouville.

A equação de movimento associado a esta ação é :: /     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde  é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.

[1] 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 






Em físicaa equação de campo de Einstein ou a equação Einstein é uma equação na teoria da gravitação, chamada relatividade geral, que descreve como a matéria gera gravidade e, inversamente, como a gravidade afeta a matéria. A equação do campo de Einstein se reduz à lei de Newton da gravidade no limite não-relativista, isto é, a velocidades baixas e campos gravitacionais pouco intensos.

Na equação, a gravidade se dá em termos de um tensor métrico, uma quantidade que descreve as propriedades geométricas do espaço-tempo tetradimensional. A matéria é descrita por seu tensor de energia-momento, uma quantidade que contém a densidade e a pressão da matéria. Estes tensores são tensores simétricos 4 x 4, de modo que têm 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem a 6. A força de acoplamento entre a matéria e a gravidade é determinada pela constante gravitacional universal.

Uma analogia para a curvatura do espaço-tempo causada por uma massa

Solução da equação de campo de Einstein[editar | editar código-fonte]

Uma solução da equação de campo de Einstein é certa métrica apropriada para a distribuição dada da massa e da pressão da matéria. Algumas soluções para uma situação física dada são com as que se seguem.

Distribuição de massa esférica simétrica e estática[editar | editar código-fonte]

Schwarzschild interior.jpg

A solução para o vazio ao redor de uma distribuição de massa esférica simétrica e estática é a métrica de Schwarzschild e métrica de Kruskal-Szekeres. Se aplica a uma estrela e conduz à previsão de um horizonte de eventos além do qual não se pode observar. Prevê a possível existência de um buraco negro de massa dada  da qual não pode ser extraída nenhuma energia, no sentido clássico do termo (isto é, não é válido para o domínio da mecânica quântica - ver radiação de Hawking).

Massa de simetria axial em rotação[editar | editar código-fonte]

A solução para o espaço vazio ao redor de uma distribuição de massa de simetria axial em rotação é a métrica de Kerr. Se aplica a uma estrela que gire e conduz à previsão da existência possível de um buraco negro em rotação de massa dada  e momento angular , do qual a energia rotacional pode ser extraída.

Universo isotrópico e homogêneo[editar | editar código-fonte]

geometria geral do universo é determinada de acordo com as equações de Friedmann e o parâmetro cosmológico Ômega se este é maior, menor ou igual a 1. De cima para baixo: um universo esférico ou fechado com curvatura positiva, um universo hiperbólico com curvatura negativa e um universo plano com curvatura nula.

A solução para um Universo isotrópico e homogêneo, totalmente com densidade constante e de uma pressão insignificante, é a Métrica de Friedmann-Robertson-Walker. Se aplica ao Universo em sua totalidade e conduz a diversos modelos de sua evolução que predizem um Universo em expansão. Em 2016, uma equipe de cosmólogos mostrou que o universo é "isotrópico", ou o mesmo, não importa maneira que é observado: Não há eixo de rotação ou qualquer outra direção especial no espaço.[1]

Forma matemática da equação do campo de Einstein[editar | editar código-fonte]

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein[editar | editar código-fonte]


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell[editar | editar código-fonte]

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

 

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

/     /   /    

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Comentários