G* = = OPERADOR QUÂNTICO DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
{ -1 / G* = / T] / c} =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =] é um operador cujo observável corresponde à ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI.
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..
/ /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.
Grupo de renormalização no espaço de momentos[editar | editar código-fonte]
Suponha uma teoria quântica de campos com campos e constantes de acoplamento descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco
Chamaremos esse campos de e diremos que ele é o campo na escala . Então
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Também chamaremos a constante de acoplamento de . A função partição sobre os campos é
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Já que alguns dos modos de Fourier estão faltando, o campo é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita regulares.[2]
Vamos decompor a região de integração da expansão em modos em duas partes:
- e
Chamaremos as expansões em modos correspondentes por
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre na integral de trajetória, mantendo variável
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:
Aqui, e são os novos campos, em termos dos quais a ação efetiva
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
é regular no limite para o contínuo. Os campos e as contantes na escala de corte são chamados de campos nus e constantes de acoplamentos nuas, enquanto e são ditas renormalizados.
Equação de Callan-Symanzik[editar | editar código-fonte]
Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar e variar . Nós fixamos os campos e constantes de acoplamento numa escala (com os valores medidos nessa escala) e mudamos os campos nus e as contantes nuas . Se pudermos mover para o infinito sem mudar o comportamento do sistema na energia (descrito por e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.
Uma outra forma de ver é mover , fixando e consequentemente e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de para , as constantes de acoplamento mudarão de para , onde é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial é chamado função beta da constante de acoplamento .
Na física, teoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.
A teoria de campo é definida pela ação local:
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde é a métrica do espaço bidimensional em que a teoria de campo é formulada, é o escalar Ricci de tal espaço, e é um acoplamento constante real. O campo é consequentemente chamado de campo Liouville.
A equação de movimento associado a esta ação é :: / / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.
- [1]
Em física, a equação de campo de Einstein ou a equação Einstein é uma equação na teoria da gravitação, chamada relatividade geral, que descreve como a matéria gera gravidade e, inversamente, como a gravidade afeta a matéria. A equação do campo de Einstein se reduz à lei de Newton da gravidade no limite não-relativista, isto é, a velocidades baixas e campos gravitacionais pouco intensos.
Na equação, a gravidade se dá em termos de um tensor métrico, uma quantidade que descreve as propriedades geométricas do espaço-tempo tetradimensional. A matéria é descrita por seu tensor de energia-momento, uma quantidade que contém a densidade e a pressão da matéria. Estes tensores são tensores simétricos 4 x 4, de modo que têm 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem a 6. A força de acoplamento entre a matéria e a gravidade é determinada pela constante gravitacional universal.
Solução da equação de campo de Einstein[editar | editar código-fonte]
Uma solução da equação de campo de Einstein é certa métrica apropriada para a distribuição dada da massa e da pressão da matéria. Algumas soluções para uma situação física dada são com as que se seguem.
Distribuição de massa esférica simétrica e estática[editar | editar código-fonte]
A solução para o vazio ao redor de uma distribuição de massa esférica simétrica e estática é a métrica de Schwarzschild e métrica de Kruskal-Szekeres. Se aplica a uma estrela e conduz à previsão de um horizonte de eventos além do qual não se pode observar. Prevê a possível existência de um buraco negro de massa dada da qual não pode ser extraída nenhuma energia, no sentido clássico do termo (isto é, não é válido para o domínio da mecânica quântica - ver radiação de Hawking).
Massa de simetria axial em rotação[editar | editar código-fonte]
A solução para o espaço vazio ao redor de uma distribuição de massa de simetria axial em rotação é a métrica de Kerr. Se aplica a uma estrela que gire e conduz à previsão da existência possível de um buraco negro em rotação de massa dada e momento angular , do qual a energia rotacional pode ser extraída.
Universo isotrópico e homogêneo[editar | editar código-fonte]
A solução para um Universo isotrópico e homogêneo, totalmente com densidade constante e de uma pressão insignificante, é a Métrica de Friedmann-Robertson-Walker. Se aplica ao Universo em sua totalidade e conduz a diversos modelos de sua evolução que predizem um Universo em expansão. Em 2016, uma equipe de cosmólogos mostrou que o universo é "isotrópico", ou o mesmo, não importa maneira que é observado: Não há eixo de rotação ou qualquer outra direção especial no espaço.[1]
Forma matemática da equação do campo de Einstein[editar | editar código-fonte]
A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.
A equação do campo se apresenta como se segue:
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde o tensor é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e é o tensor de energia-momento. A constante de acoplamento se dá em termos de é Pi, é a velocidade da luz e é a constante gravitacional.
O tensor da curvatura de Einstein se pode escrever como
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde além disso é o tensor de curvatura de Ricci, é o escalar de curvatura de Ricci e é a constante cosmológica.
A equação do campo portanto também pode apresentar-se como se segue:
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.
Estas equações são a base da formulação matemática da relatividade geral.
Interpretacão geométrica da Equação de Einstein[editar | editar código-fonte]
A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar do espaço é proporcional à densidade aparente :
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.
É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..
Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~ cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.
Equações de Einstein-Maxwell[editar | editar código-fonte]
Se o tensor energia-momento é aquele de um campo eletromagnético, i.e. se o tensor momento-energia eletromagnético
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
/ / /
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Comentários
Postar um comentário